7.1
HIGH CVSS 4.0
CVE-2025-62495
Type confusion in string addition in QuickJS
Description

An integer overflow vulnerability exists in the QuickJS regular expression engine (libregexp) due to an inconsistent representation of the bytecode buffer size. * The regular expression bytecode is stored in a DynBuf structure, which correctly uses a $\text{size}\_\text{t}$ (an unsigned type, typically 64-bit) for its size member. * However, several functions, such as re_emit_op_u32 and other internal parsing routines, incorrectly cast or store this DynBuf $\text{size}\_\text{t}$ value into a signed int (typically 32-bit). * When a large or complex regular expression (such as those generated by a recursive pattern in a Proof-of-Concept) causes the bytecode size to exceed $2^{31}$ bytes (the maximum positive value for a signed 32-bit integer), the size value wraps around, resulting in a negative integer when stored in the int variable (Integer Overflow). * This negative value is subsequently used in offset calculations. For example, within functions like re_parse_disjunction, the negative size is used to compute an offset (pos) for patching a jump instruction. * This negative offset is then incorrectly added to the buffer pointer (s->byte\_code.buf + pos), leading to an out-of-bounds write on the first line of the snippet below: put_u32(s->byte_code.buf + pos, len);

INFO

Published Date :

Oct. 16, 2025, 4:15 p.m.

Last Modified :

Oct. 16, 2025, 4:15 p.m.

Remotely Exploit :

No
Affected Products

The following products are affected by CVE-2025-62495 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

No affected product recoded yet

CVSS Scores
The Common Vulnerability Scoring System is a standardized framework for assessing the severity of vulnerabilities in software and systems. We collect and displays CVSS scores from various sources for each CVE.
Score Version Severity Vector Exploitability Score Impact Score Source
CVSS 4.0 HIGH 14ed7db2-1595-443d-9d34-6215bf890778
CVSS 4.0 HIGH [email protected]
Solution
Fix integer overflow by consistently using unsigned types for size and offset calculations.
  • Use unsigned types for buffer size and offsets.
  • Validate buffer sizes before casting to signed integers.
  • Apply patches to the regular expression engine.
  • Update the QuickJS library to the latest version.
References to Advisories, Solutions, and Tools

Here, you will find a curated list of external links that provide in-depth information, practical solutions, and valuable tools related to CVE-2025-62495.

URL Resource
https://bellard.org/quickjs/Changelog
https://issuetracker.google.com/434196926
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2025-62495 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2025-62495 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2025-62495 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2025-62495 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by [email protected]

    Oct. 16, 2025

    Action Type Old Value New Value
    Added Description An integer overflow vulnerability exists in the QuickJS regular expression engine (libregexp) due to an inconsistent representation of the bytecode buffer size. * The regular expression bytecode is stored in a DynBuf structure, which correctly uses a $\text{size}\_\text{t}$ (an unsigned type, typically 64-bit) for its size member. * However, several functions, such as re_emit_op_u32 and other internal parsing routines, incorrectly cast or store this DynBuf $\text{size}\_\text{t}$ value into a signed int (typically 32-bit). * When a large or complex regular expression (such as those generated by a recursive pattern in a Proof-of-Concept) causes the bytecode size to exceed $2^{31}$ bytes (the maximum positive value for a signed 32-bit integer), the size value wraps around, resulting in a negative integer when stored in the int variable (Integer Overflow). * This negative value is subsequently used in offset calculations. For example, within functions like re_parse_disjunction, the negative size is used to compute an offset (pos) for patching a jump instruction. * This negative offset is then incorrectly added to the buffer pointer (s->byte\_code.buf + pos), leading to an out-of-bounds write on the first line of the snippet below: put_u32(s->byte_code.buf + pos, len);
    Added CVSS V4.0 AV:A/AC:H/AT:P/PR:L/UI:P/VC:H/VI:H/VA:L/SC:H/SI:H/SA:L/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X
    Added CWE CWE-191
    Added Reference https://bellard.org/quickjs/Changelog
    Added Reference https://issuetracker.google.com/434196926
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
Base CVSS Score: 7.1
Attack Vector
Attack Complexity
Attack Requirements
Privileges Required
User Interaction
VS Confidentiality
VS Integrity
VS Availability
SS Confidentiality
SS Integrity
SS Availability